ASYMPTOTIC THEORY OF THE TURBULENT BOUNDARY
LAYER AS A PROBLEM OF SINGULAR PERTURBATIONS

D. N, Vasil'ev UDC 532.517.4

We consider an asymptotic theory of the turbulent boundary layer [1,2]. In this paper we make
an attempt to further develop the mathematical aspects of this theory. We demonstrate the
features of this theory by applying it to a problem which is close to the so-called equilibrium
turbulent boundary layer with a pressure gradient and blowing.

NOTATION
X,V coordinates, parallel and perpendicular to the wall
u velocity component in the x direction
p,p', v pressure, density, and kinematic viscosity coefficient
i scale of turbulence
T tangential stress
us speed at the outer edge of the boundary layer
o thickness of the boundary layer
o* displacement thickness
O* * momentum loss thickness
Cf coefficient of friction
R Reynolds number

The subscript 0 refers to a standard flow; k to a parameter relating to the separation point; * refers
to a displacement thickness parameter; * * refers to a momentum loss thickness parameter and w refers
to a parameter relating to the wall.

1. Statement of the Problem, Initial Definitions and Relations, We introduce, following [1], a standard
turbulent boundary layer involving the flow of an incompressible fluid over a flat plate, and to describe it
we use the subscript 0. For the turbulent tangential stress in the general case, we have

v = pl* (du / dy)? 1.1)

Introducing the dimensionless coordinate 7, the velocﬂ:y w, the density p, and the scale of turbulence
1 , we obtain

T do \2 Yy u p! v
= (m) O=te=ie=tri=%) a2
We assume that at its outer edge the standard boundary layer has the same parameters as the bound-

ary layer under investigation, From Eq. (1.1) it then follows that

T ___pl(de/dn)t
T ol (e T I 1.3)
When v — 0 the relation (1.3) extends over the whole boundary-layer thickness and, after a formal in-

tegration, it assumes the form
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1= SI(J’_ E)V’Ldm (1.4)

ps T 3

To an accuracy measured by its satisfaction of Eq, (1.1) the relation (1.4) constitutes a limiting inte-
gral formulation relative to the law of friction in the general case, If we take ! = [;, then from Eq. (1.4)
we obtain

1 =<<L T—”)%dm 1.5)
; Lo T *

For R — « the integral (1.5) was also obtained in [1] for the most general case of flow over a flat plate. It
was shown there that the requirement of self-similarity of ! with respect to the perturbation parameters is
not necessary in this case for the whole boundary-layer thickness, Only the existence of the condition I ~ y
in the region y; < y «§ is necessary. The expression (1.4) has an advantage over Eq. (1.5) in that it does
not assume conservation of the scale of turbulence in the general case in comparison with a standard flow,
and it permits taking this nonconservation readily into account if only a relative quantitative formulation for
it is known, The limiting relative friction law may also be written in a different form. From Eq. (1.3),
analogous to Eq. (1.4), we obtain

1 1 y
Sd“’ ___S(_Po_i> " da, (1.6)

P To

From Eq. (1.3) we can, in general, obtain several integral formulations of the limiting relative law
according as one or another factor appears in the left or the right member of the relation (1.3), this factor
being descriptive of the relative perturbation of the standard boundary layer. The limiting relative law can
also be formulated in differential form as the boundary-value probiem

do N o=0 for @y =0
(T?{) T w=1 for w,=1

dwg

@.mn

The extra boundary condition gives the desired connection between the relative friction law and the
perturbation parameters. A formal integration of Eq. (1.7) yields one or another relative integral law.

We consider the problem involving a turbulent boundary layer in an incompressible liquid with a
positive pressure gradient and blowing. To obtain the asymptotic relative friction law from the expres-
sions (1.4), (1.6), or (1.7) in this case, it is necessary to know the relationship between the relative tangen-
tial stress and the nonconservation of I and the velocity profiles w and w; of the boundary layer and the
perturbation parameters. In the problem under investigation the perturbations in question are the blowing
and the longitudinal pressure gradient. As is done in the majority of the papers in the literature, we as-
sume, as a first approximation, that 1/, = 1,

The relationship between the tangential stress and the velocity profile w or w, and the perturbation
parameters may be obtained by considering jointly the equations of continuity and motion in the boundary
layer. For boundary layers which are close to equilibrium (in the sense that the influence of the deriva-
tives of the perturbation parameters is small in comparison with the influence of these same parameters on
the flow in the boundary layer) we can obtain (see, e.g., [3]), from the boundary-layer partial differential
equations,

T

Cfo
= 3> (Y2, 4 b2,) + (— N 2z

T
n N
zg=1— —52—*((1)Smdn - szdn>
0 0
k3 N
By = — 52* (wadn——Sm%in) {1.8)
0 o
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Upon taking these relations into account, we can write the ratio 7/ 7 in the form

T z
S — W, + by, + A ( . B R Pt &
Q1+ 09, + Ay Pr= = P2 e , Q3 ” A= C, 1.9)
For a qualitative analysis of the problem we can find the distribution of 7/ T, by using a polynom1a1
approximation, In this case [1]

T/t =¥ + (bo + An) f (n) (1.10)

Upon approximating the tangential stress by a second or third degree polynomial, the expression
f{(n) assumes, respectively, the form

f=0+n" o f@m) =+ 21

In solving the problem an analytical formulation for the standard velocity profile is also necessary.
Both theoretical solutions, based on similarity and dimensionality considerations, as well as the numerous
experimental data classified in [4], show that the total turbulent universal velocity-defect law

L% _Dom),  Do(n) = — — lInn + W (n)] 1.13)

Vl/ 2 Cfov

In [1] it was shown that for R—~ « the thickness of the viscous sublayer n{— 0 and that
VinCr, = — x(lnny)?—0 1.12)
Taking this circumstance into account, we find from Eq. (1.11) that
o=1 fo n1>0, @ =0 for =20 (1.13)

Thus the representation (1.11) for B — = is correct in the sense that it satisfies the boundary condi-
tion at the wall. Various quantitative formulations of the trace function W(n) are available depending essen-
tially on how the boundary-layer thickness is defined. '

In this paper, for the thickness of the turbulent boundary layer under standard conditions, we take
that value of the transverse coordinate for which the correlation coefficient of the turbulent velocity fluctua-
tions assumes the value zero,

{uvy -
(Cu2y <oty)7e

This coordinate also corresponds to a zero value of the turbulent fangential stress. We approxi-
mated the trace function by the expression

N
W = ay + an + Yagon?® + S T exp (=2 )y a.14)
) ‘

In addition, in determining the coefficients a;, we assumed, from the condition for smooth coupling
with the external flow, that D, ~# 0 and dD,/dn ~ 0. The three remaining coefficients were determined by
the method of least squares from the experimental data for D, given in [4]. Moreover, to satisfy the con-
dition of equality of the correlation coefficient at the external edge of the boundary layer to zero, we found
it necessary to increase its thickness by a factor of 1.2 compared with that used in [4]. This is plainly
evident in Fig. 1 where we have used Klebanov's experimental data (see, for example, [3]) for the distribu-
tion of the correlation coefficient and the relative tangential stress for one of the experiments, appearing
also in the series treated in [4].

The lower scale of abscissas in this figure corresponds to the boundary-layer thickness adopted in
[4]. Determination of the turbulent boundary-layer thickness from the correlation coefficient is more pre-
cise inasmuch as this function approaches the value zero rather steeply, whereas in the region y = 6 the
variation of the velocity is very small. The approximation of Dy(n) in accord with Eq. (1.14), along with the
experimental data, is shown in Fig. 2. In what follows we assume that the universality of the law (1.11), ob-
served in [4] for finite numbers R, continues to hold as R — «, In Fig. 1 we also display the theoretical re-
lationship for determining the tangential stress, obtained from the expressions (1.8) and (1.14) for dp/dx =
Oand R — «,
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From a joint consideration of the expressions (1.7), (1.9}, and (1.11)
it follows that the problem concerning the asymptotic relative friction law
and the asymptotic velocity profile leads, in the given case, to the solu-

9 tion of the integrodifferential equation

\9°
« Cdw \? Cy, dDy \?
N J (o) = S 1oy 4+ boul 4 (= D ( —22) (1.15)
e
o \ with the boundary conditions (1.7), and with one fprmulation or another for

the functions ¢, ¢,, @3, D;.

2. Asymptotic Relative Friction Law and Asymptotic Velocity Pro-
file, A general solution of Eq. (1.15), even in the case involving the
, L ] 1 ! i éi—ﬁlples’c approximating representation (1.10) of the functions ¢4, ¢,, ¢4
is not known, For R — =, the friction coefficient Cfo - (, and if we
Fig. 1 neglect the term containing C for we obtain

- a8

/] T

7 MKW For this equation the boundary condition w = 0 for n = 0 cannot be
rg satisfied in the general case. As was shown in [5], in such cases one sus-
M pects the presence of the singular nature of the solution, and the classical
//‘ method of neglecting a term with a small parameter or expanding in a
A series with respect to this parameter can no longer be applied for the en-
f tire domain of the solution, To solve such problems the method of

' matched asymptotic expansions was proposed in [5]. In accord with this
.{4 method we introduce an internal and an external region of the solution and
we expand this solution in a series in terms of the parameter y, = v, /2
12 7 We consider the external solution (superscript e) in the form

Fig. 2

=~

0 =0 = Do, ," 2.2)

Substituting Eq. (2.2) into Eq. (1.15) and equating terms with identical powers of y,, we obtain, to
within 7y,

doo’ — dD, .
%zyr(—f)¢s(_ dno>’ o =1 for n=1 2.3)

Here the superscript e, together with the subscript 0, denotes the external solution of zero order with
respect to ¥ ;. A formal integration with respect to n gives

mo=1-l/(_—7)§l/q§(—— dD")dn 2.4)

an
"

For the internal solution we introduce the superscript i and a new internal variable, for which we
choose the dimensionless velocity under standard conditions

o =1 — D, (2.5)
Expanding in a series with respect to y;, we write the internal solution in the form
o' = Z‘l 0 (00) 7o (2.6)

Substituting this relation into Eq. (1.15) and equating terms with identical exponents of Vo, We obtain,
to within y, :

(dwg’ / dwe)® = Yo + by, o) =0 for ©5 =0 2.7)

Here the superscript i, together with the subscript 0, denotes the internal solution of zero order with
respect to . For small 5 (the domain of the internal solution), it follows from Egs. (1.8) and (1.9), or from
the initial boundary-layer partial differential equations, that
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¢ —~1, Pp— 0 for n—0
Taking this circumstance into account, we obtain from Eq. (2.7)

(d(!)()i/d(ﬂo)2 = LF + bﬁ)oiy (’)Oi = 0 for Wy = O » (2 ,8)
The solution (2.8) has the form

Wyl = 'V—‘I—“mo + 1/,bw,? 2.9)

The parameter ¥ is as yet free, its connection with f and b being established through the coalescence
of the internal and external solutions, To see what this connection is, we apply the principle of matched
limits, formulated as follows [5]: the external limit of the internal expansion is equal to the internal limit
of the external expansion. ‘

The analytical formulation of this principle in our case has the form

@y’ (1) = g (0) 2.10)

Substituting Eqgs. (2.4) and (2.9) into Eq. (2.10), we obtain

VE 40—~ VT Vi 222 )an e

This is, in fact, the limiting relative friction law for gradient flow with blowing. For the velocity pro-
file we can construct a composite solution of zero order in v, over the whole domain of the solution. We
use the additive method [5] to obtain the composite solution

e i__ e'O
0+={ @y + @ we? (0) @.12)

ay® + @ — 6" (1)

Here the plus superscript, together with the subscript 0, denotes the composite solution of zero order
in y,. Taking into account Eqs. (2.4), (2.9), and (2.11), we obtain from Eq. (2.12)

0t =1 —VY{(—1)

S

Vo (= ) an Yot op - VP &

or

00 = V=1 Vo[~ 5 ) dn+ Vo0 + a0 . (2.13)

[}
Eliminating ¥ with the aid of Eq. (2.11), we obtain
n

o = VD[ V(= )= |V 422 )an]

0 0

- oy (1 — —Z~) + —Z— 02 2.14)

From the expressions (1.13) and (2.13) it is clearly evident that for y, — 0 the solution consists of two
parts: a singular part

V? oy + Y 4bo®

concentrated entirely in an infinitesimally small n neighborhood, and a regular part, defined in the interval .
0 < n =1, Taking Eq. (1.13) into account, we can write the solution (2.13) for R — « also in the form

o = (VT + 1)+ VEDWY (=G )Jan 0 n>0 2.15)

(1)0+=0 for 'I’]=O

710



Thus an application of the prineiple of matched asymptotic expansions has enabled us to exhibit in a
clear and simple manner the singular nature of the problem of the limiting flow R — «, y,— 0) in a turbu-
lent boundary layer with a pressure gradient and blowing.

We compare the solution (2.15) with several exact particular solutions of Eq. (1.15).

The case of flow with a pressure gradient in the absence of blowing. In this case the differential equa-
tion of the problem takes the form

d dD
I = VTeTe £ (— Do (— 22 (2.16)
with the boundary conditions (1.7).
The solution of this equation may be written in the form

Mo
® =limS —):W]/Toz(nl)‘l"—i—(—f)ndﬂ*f'
N0

Te—>0 T

Vrld () Yo, + (— 1o, (— %?,—“)dn 2.17)

2

LI I

where 7, > 71y and account has been taken of the fact that

aD, 1
(_ dn0>_>7ﬁ for M0

A very essential fact here is that the parameter ¥ is connected with the lower limit of integration in
the first integral, Calculating the first integral, we obtain

0 VT | @o0O4D | 2 o g,

o= lim % @ T 0y (@;—8) T

h—0
N0

+SV(“*7)—@(~ dgf)dn (1 > ) (2.18)

D=Vl )T+ (=Hn =12,  8=VrI(m) ¥

Substituting
2
Tof (My) = ('— ﬁ;) for 1M —0

into the expression (2.18) and evaluating the limit on the right-hand side, we obtain, after transformations
have been made,

=

=1/’——-.]/(_—-—f)g]/c-p;(-— dz;))d'q for n>n—0 (2.19)
0
® =0 for n=mn-0

Thus we obtain the same result as was obtained previously by the method of matched asymptotic ex~
pansions for b = 0,

The case of a flow with blowing in the absence of a pressure gradient, In this case Eq. (1 15) as-
sumes the form

Al e an
G = Vi (P + bw) (— ) 2.20)

or after introducing the variable w,
do /doy =V T, + be, 2.21)
In the region of the wall n — 0, ¢, =1, @, — w and, consequently,

do /do, = V¥ + bo (2.22)
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Fig, 5

§:

The solution of this equation with the boundary conditions (1.7) has the
form [1]
, o=V Pw+ Y abwy? @.23)
Substituting Eq. (2.23) into Eq. (1.8), we find that if Yo — 0, then zy — Z4,
for0=n=1,¢,—~1forn > 0,9, —~w for n —~ 0,

Consedquently for y,— 0 and f = 0, the equation (2.21) goes over into
Eq. (2.22) and, together with its solution (2.23), does not depend on 5. Then
just as in the preceding case, the solution (2.23) coincides with the solution
(2.13), obtained by the method of matched asymptotic expansions.

3. Numerical Results, We consider at first the case in which the func-
tion ¢4 is self-similar in the perturbation parameters, chosen, for example,
in accord with Eq. (1.10). In this case it follows from Eq. (2.11) that

V¥=01-Yd)1—~VFE), F=fif

(3.1)

The parameter f} is also obtained from Eq. (2.11) subject to the condi-
tion ¥ =0 ’

GRS

0

]

From Eqgs. (8.1) and (3.2) it is evident that the limiting relative friction
law in the form (3.1) does not depend on a specific quantitative formulation
for ¢;. The specific form of this function determines only the parameter f)
for given b, or the parameter by for given f. From the relations (1.8) we see
that the functions ¢4, ¢,, ¢ ; depend implicitly on the perturbation parameters,
and an arbitrary method, based on their self-similarity in regard to the per-
turbations, does not give correct quantitative results. We extract from Eq.
(2.15) the singular part of the solution; this leads to a change in the boundary
condition for the velocity at the wall, In this case the equations (2.15), (1.8),
and (1.9) form the system

3.2)

The boundary conditions assume the form

=1,

d N L dDy dJ
FoVIVR(= ) F=e G=o (3-3)
where
n n T
e _N—H{io~J)—wls B (o ¢
® = T p T Jl.-gmdn, .I2_§m dn, Js_é\Dodn
o=VE +Y4b J,=0,J,=0 for =0
J,y=1—08%/8, Jo=1—6%/8—08*/8 for m=1 5.4

The boundary conditions at =1 enable us to find ¥, 6*/ 8, 6%*/ 5, and H as functions of f and b,

The system (3.3) with the boundary conditions (3.4) was solved on a digital computer.

In Fig. 3 we have plotted the limiting relative friction law in the form

¥

G(F,b) =gy

(3.5)

The relationship between the parameters b and f at the separation point of the boundary layer, ¥ = 0,
is shown in Fig. 4. In the turbulent boundary-layer calculations a more suitable gradient parameter is one
formulated in terms of the momentum loss thickness



Therefore, in Fig. 3 we also plot the limiting relative friction law in the form

Y fHx
GO =g P = 0

The relationship between the parameters b and F* * at the boundary-layer separation point (¥ * * = 0}
is shown in Fig. 4. We see that the functional relations (3.5) and (3.6) exhibit weak stratification with re-
spect to the parameter b; they may be satisfactorily approximated by the expressions

G=(1 —F), G =1—YF™*(2_F) (3.7

In the absence of a pressure gradient (f = 0) the results obtained here are identical to the theoretical
results obtained in [1], wherein a fairly detailed comparison of theory with experiment was made., In [6],
based on a careful analysis of a large amownt of contemporary experimental data relating to separation of
the turbulent boundary layer, it was established that 2.2 < Hy < 2.8, the values Hy > 2.4 specifying, most
likely, the secondary flows or distortions due to probes inserted near the wall, In this paper we obtain the
theoretical value Hy = 2.3. In Fig. 5 we compare the limiting calculated velocity profileDg = (1 — w)/V&7*)
for ¥ = 0 with known experimental profiles due to Stratford [7] with ¥~ (., (We use the symbol O for data
at Sec. 1 and A for data at Sec. 2). Experimental values of the gradient parameters obtained therein were
0.0065 < fi¥ < 0.01, Hy ~ 2.29.

The theoretical value fjf = f**Hy = 0.00821, and also the theoretical velocity profile, agree satis-
factorily with the experimental values,

The author thanks S. S, Kutateladze, A, 1. Leont'ev, and G. V, Aronovich for their interest in this ef-
fort.
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